LeetCode-145. 二叉树的后序遍历
问题地址
LeetCode145. 二叉树的后序遍历
问题描述
规则
- 给定一个二叉树,返回它的 *后序 遍历。
示例
输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]
进阶
- 递归算法很简单,你可以通过迭代算法完成吗?
解析
解题思路
- 后序遍历:是按照访问左右根的顺序遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。整个遍历过程天然具有递归的性质。
- 递归遍历树的时候隐式的维护一个栈,我们使用迭代的方法遍历树,需要自己维护栈;
- 下面介绍一种方法标记法,针对树的前、中、后序遍历可以写统一模板的代码;
- 在使用栈时,无法同时处理访问节点和处理节点不一致的情况,故我们需要把访问结点和处理节点同时放入栈中,但是需要做标记;
- 这里采用的标记方法是:当要处理的节点放入栈后,紧接着放入一个标记节点;
数据操作分析
- 见思路分析
复杂度分析
- 时间复杂度
- 空间复杂度
编码实现
public class LeetCode0145_BinaryTreePostorderTraversal {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
if (root == null) return ans;
stack.push(root);
while (!stack.isEmpty()) {
TreeNode last = stack.pop();//此时根节点是访问节点,先出栈
if (last != null) {
//后续遍历顺序倒序存入 根-右-左
//这样处理的顺序就是 左-右-根()
stack.push(last);//放入处理节点
stack.push(null);//放入标记节点
if (last.right != null) stack.push(last.right);
if (last.left != null) stack.push(last.left);
} else {
last = stack.pop();
ans.add(last.val);
}
}
return ans;
}
public void postorder(TreeNode root, List<Integer> list) {
if (root == null) return;
if (root.left != null) postorder(root.left, list);
if (root.right != null) postorder(root.right, list);
list.add(root.val);
}
}
官方解法
方法一:递归
思路与算法:
- 思路与算法
- 首先我们需要了解什么是二叉树的后序遍历:按照访问左子树——右子树——根节点的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。
- 定义 postorder(root) 表示当前遍历到 root 节点的答案。按照定义,我们只要递归调用 postorder(root->left) 来遍历 root 节点的左子树,然后递归调用 postorder(root->right) 来遍历 root 节点的右子树,最后将 root 节点的值加入答案即可,递归终止的条件为碰到空节点。
复杂度分析:
- 时间复杂度:O(n)。其中 n 是二叉搜索树的节点数。每一个节点恰好被遍历一次。
- 空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(\log n),最坏情况下树呈现链状,为 O(n)。
编码实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
postorder(root, res);
return res;
}
public void postorder(TreeNode root, List<Integer> res) {
if (root == null) {
return;
}
postorder(root.left, res);
postorder(root.right, res);
res.add(root.val);
}
}
方法二:迭代
思路及算法:
- 我们也可以用迭代的方式实现方法一的递归函数,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其余的实现与细节都相同,具体可以参考下面的代码。
复杂度分析:
- 时间复杂度:O(n)。其中 n 是二叉搜索树的节点数。每一个节点恰好被遍历一次。
-
空间复杂度:O(n)。为迭代过程中显式栈的开销,平均情况下为 O(\log n),最坏情况下树呈现链状,为 O(n)。
编码实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
if (root == null) {
return res;
}
Deque<TreeNode> stack = new LinkedList<TreeNode>();
TreeNode prev = null;
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if (root.right == null || root.right == prev) {
res.add(root.val);
prev = root;
root = null;
} else {
stack.push(root);
root = root.right;
}
}
return res;
}
}
方法二:Morris 遍历
思路及算法:
- 种巧妙的方法可以在线性时间内,只占用常数空间来实现后序遍历。这种方法由 J. H. Morris 在 1979 年的论文「Traversing Binary Trees Simply and Cheaply」中首次提出,因此被称为 Morris 遍历。
- Morris 遍历的核心思想是利用树的大量空闲指针,实现空间开销的极限缩减。其后序遍历规则总结如下:
- 新建临时节点,令该节点为 root;
- 果当前节点的左子节点为空,则遍历当前节点的右子节点;
- 果当前节点的左子节点不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点;
- 如果前驱节点的右子节点为空,将前驱节点的右子节点设置为当前节点,当前节点更新为当前节点的左子节点。
- 如果前驱节点的右子节点为当前节点,将它的右子节点重新设为空。倒序输出从当前节点的左子节点到该前驱节点这条路径上的所有节点。当前节点更新为当前节点的右子节点。
- 重复步骤 2 和步骤 3,直到遍历结束。
- 这样我们利用 Morris 遍历的方法,后序遍历该二叉搜索树,即可实现线性时间与常数空间的遍历。
复杂度分析:
-
时间复杂度:O(n)。其中 n 是二叉树的节点数。没有左子树的节点只被访问一次,有左子树的节点被访问两次。
-
空间复杂度:O(1)。只操作已经存在的指针(树的空闲指针),因此只需要常数的额外空间。
编码实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
if (root == null) {
return res;
}
TreeNode p1 = root, p2 = null;
while (p1 != null) {
p2 = p1.left;
if (p2 != null) {
while (p2.right != null && p2.right != p1) {
p2 = p2.right;
}
if (p2.right == null) {
p2.right = p1;
p1 = p1.left;
continue;
} else {
p2.right = null;
addPath(res, p1.left);
}
}
p1 = p1.right;
}
addPath(res, root);
return res;
}
public void addPath(List<Integer> res, TreeNode node) {
List<Integer> tmp = new ArrayList<Integer>();
while (node != null) {
tmp.add(node.val);
node = node.right;
}
for (int i = tmp.size() - 1; i >= 0; --i) {
res.add(tmp.get(i));
}
}
}
精彩评论
跳转地址1:帮你对二叉树不再迷茫,彻底吃透前中后序递归法(递归三部曲)和迭代法(不统一写法与统一
前言
- 这篇文章,彻底讲清楚应该如何写递归,并给出了前中后序三种不同的迭代法,然后分析迭代法的代码风格为什么没有统一,最后给出统一的前中后序迭代法的代码,帮大家彻底吃透二叉树的深度优先遍历。
-
对二叉树基础理论还不清楚的话,可以看看这个关于二叉树,你该了解这些!。
- 二叉树:一入递归深似海,从此offer是路人介绍了二叉树的前后中序的递归遍历方式。
- 二叉树:听说递归能做的,栈也能做!介绍了二叉树的前后中序迭代写法。
- 二叉树:前中后序迭代方式的写法就不能统一一下么? 介绍了二叉树前中后迭代方式的统一写法。
- 以下开始开始正文:
- 二叉树深度优先遍历
- 前序遍历: 0144.二叉树的前序遍历
- 后序遍历: 0145.二叉树的后序遍历
- 中序遍历: 0094.二叉树的中序遍历
- 二叉树广度优先遍历
- 层序遍历:0102.二叉树的层序遍历
这几道题目建议大家都做一下,本题解先只写二叉树深度优先遍历,二叉树广度优先遍历请看题解二叉树:层序遍历登场!
- 层序遍历:0102.二叉树的层序遍历
- 二叉树深度优先遍历
- 先帮大家明确一下二叉树的遍历规则:
-
以上述中,前中后序遍历顺序如下:
- 前序遍历(中左右):5 4 1 2 6 7 8
- 中序遍历(左中右):1 4 2 5 7 6 8
- 后序遍历(左右中):1 2 4 7 8 6 5
递归法
思路:
这次我们要好好谈一谈递归,为什么很多同学看递归算法都是“一看就会,一写就废”。
主要是对递归不成体系,没有方法论,每次写递归算法 ,都是靠玄学来写代码,代码能不能编过都靠运气。
本篇将介绍前后中序的递归写法,一些同学可能会感觉很简单,其实不然,我们要通过简单题目把方法论确定下来,有了方法论,后面才能应付复杂的递归。
递归写法
这里帮助大家确定下来递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!
– 确定递归函数的参数和返回值:
– 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
– 确定终止条件:
– 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
– 确定单层递归的逻辑:
– 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。
编码实现
好了,我们确认了递归的三要素,接下来就来练练手:以下以前序遍历为例:
– 确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入vector在放节点的数值,除了这一点就不需要在处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
void traversal(TreeNode* cur, vector<int>& vec)
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
if (cur == NULL) return;
- 确定单层递归的逻辑:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
vec.push_back(cur->val); // 中
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了,在看一下完整代码:
前序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
vec.push_back(cur->val); // 中
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
那么前序遍历写出来之后,中序和后序遍历就不难理解了,代码如下:
中序遍历:
void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal(cur->left, vec); // 左
vec.push_back(cur->val); // 中
traversal(cur->right, vec); // 右
}
后序遍历:
void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
vec.push_back(cur->val); // 中
}
拓展
- 此时大家可以做一做leetcode上三道题目,分别是:
- 144.二叉树的前序遍历
- 145.二叉树的后序遍历
- 94.二叉树的中序遍历
可能有同学感觉前后中序遍历的递归太简单了,要打迭代法(非递归),别急,我们明天打迭代法,打个通透!
迭代法
思路:
为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?
我们在栈与队列:匹配问题都是栈的强项中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。
前序遍历(迭代法)
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将跟节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
动画如下:
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top(); // 中
st.pop();
result.push_back(node->val);
if (node->right) st.push(node->right); // 右(空节点不入栈)
if (node->left) st.push(node->left); // 左(空节点不入栈)
}
return result;
}
};
此时会发现貌似使用迭代法写出前序遍历并不难,确实不难。
此时是不是想改一点前序遍历代码顺序就把中序遍历搞出来了?
其实还真不行!
但接下来,再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。
中序遍历(迭代法)
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
– 处理:将元素放进result数组中
– 访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
动画如下:
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
TreeNode* cur = root;
while (cur != NULL || !st.empty()) {
if (cur != NULL) { // 指针来访问节点,访问到最底层
st.push(cur); // 将访问的节点放进栈
cur = cur->left; // 左
} else {
cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)
st.pop();
result.push_back(cur->val); // 中
cur = cur->right; // 右
}
}
return result;
}
};
后序遍历(迭代法)
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
if (node->right) st.push(node->right); // 空节点不入栈
}
reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了
return result;
}
};
此时我们实现了前后中遍历的三种迭代法,是不是发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。
二叉树前中后迭代方式统一写法
此时我们在二叉树:一入递归深似海,从此offer是路人中用递归的方式,实现了二叉树前中后序的遍历。
在二叉树:听说递归能做的,栈也能做!中用栈实现了二叉树前后中序的迭代遍历(非递归)。
之后我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。
实践过的同学,也会发现使用迭代法实现先中后序遍历,很难写出统一的代码,不像是递归法,实现了其中的一种遍历方式,其他两种只要稍稍改一下节点顺序就可以了。
其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!
重头戏来了,接下来介绍一下统一写法。
我们以中序遍历为例,在二叉树:听说递归能做的,栈也能做!中提到说使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况。
那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。
如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。
迭代法中序遍历
中序遍历代码如下:(详细注释)
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node->right) st.push(node->right); // 添加右节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node->left) st.push(node->left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.top(); // 重新取出栈中元素
st.pop();
result.push_back(node->val); // 加入到结果集
}
}
return result;
}
};
看代码有点抽象我们来看一下动画(中序遍历):
动画中,result数组就是最终结果集。
可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。
此时我们再来看前序遍历代码。
迭代法前序遍历
迭代法前序遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
st.push(node); // 中
st.push(NULL);
} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};
迭代法后序遍历
后续遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
st.push(node); // 中
st.push(NULL);
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
} else {
st.pop();
node = st.top();
st.pop();
result.push_back(node->val);
}
}
return result;
}
};
总结
此时我们写出了统一风格的迭代法,不用在纠结于前序写出来了,中序写不出来的情况了。
但是统一风格的迭代法并不好理解,而且想在面试直接写出来还有难度的。
所以大家根据自己的个人喜好,对于二叉树的前中后序遍历,选择一种自己容易理解的递归和迭代法。